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Shear-induced instabilities in layered liquids
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Motivated by the experimentally observed shear-induced destabilization and reorientation of smectic-A-like
systems, we consider an extended formulation of smectic-A hydrodynamics. We include both, the smectic

layering ~via the layer displacementu and the layer normalp̂) and the directorn̂ of the underlying nematic
order in our macroscopic hydrodynamic description and allow both directions to differ in nonequilibrium
situations. In an homeotropically aligned sample the nematic director does couple to an applied simple shear,
whereas the smectic layering stays unchanged. This difference leads to a finite~but usually small! angle

betweenn̂ and p̂, which we find to be equivalent to an effective dilatation of the layers. This effective
dilatation leads, above a certain threshold, to an undulation instability of the layers. We generalize our earlier
approach@G. K. Auernhammer, H. R. Brand, and H. Pleiner, Rheol. Acta39, 215~2000!# and include the cross
couplings with the velocity field and the order parameters for orientational and positional order and show how
the order parameters interact with the undulation instability. We explore the influence of various material
parameters on the instability. Comparing our results to recent experiments and molecular dynamic simulations,
we find a good qualitative agreement.

DOI: 10.1103/PhysRevE.66.061707 PACS number~s!: 61.30.2v, 47.20.Ft, 83.50.Ax, 05.70.Ln
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I. INTRODUCTION

Submitted to an applied shear flow, many complex liqu
show an interesting coupling between their internal struct
and the flow field. For smectic-A-like systems~including
block copolymers, lyotropic systems, and side-chain liq
crystalline polymers! this coupling may induce reorientatio
of the layers. Experiments on a variety of systems wh
differ significantly in their microscopic details show, neve
theless, striking similarities in their macroscopic behav
under shear. The systems under investigation include b
copolymers @1–6#, low molecular weight~LMW ! liquid
crystals@7–9#, lyotropic lamellar phases~both LMW @10–
12# and polymeric@13#!, and liquid crystalline side-chain
polymers @14,15#. These experiments use either a stea
shear~typically for the low-viscosity systems, e.g., in a Co
ette cell! or large amplitude oscillatory shear~often in the
highly viscous polymeric systems, e.g., in a cone-plate
plate-plate geometry!. Due to these experimental differenc
a direct comparison between the different systems is no
ways straightforward. The common features of all these
periments can be described as follows. Starting with
aligned sample where the layers are parallel to the plane
constant velocity~‘‘parallel’’ orientation!, the layering is
stable up to a certain critical shear rate@2,5,8–11,13#. At
higher shear rates two different situations are observed.
pending on the system, either multilamellar vesic
@10,12,13# ~‘‘onions,’’ typically in lyotropic systems! or lay-
ers perpendicular to the vorticity direction@1–5,8,9,14#
~‘‘perpendicular’’ orientation, typically in solvent free sys
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tems! form. In some of the systems a third regime is o
served at even higher shear rates with a parallel orienta
@5,10#. If the starting point is rather a randomly distribute
lamellar phase, the first regime is not observed@1,4,12,16#.
This last point illustrates that experiments on layered liqu
depend on the history of the sample. In our further discuss
we will restrict ourselves to systems showing a well align
parallel orientation before shear is applied.

The experimental similarities between different syste
indicate that the theoretical description of these reorien
tions can be constructed, at least to some extent, from
common basis independent of the actual system~on the other
hand, a description including the differences between
systems under investigation must refer closer to their mic
scopic details!. When looking for a macroscopic descriptio
the well established standard smectic-A hydrodynamics@17–
20# is a good starting point for such a theoretical approa

As first shown by Delayeet al. @21# and Clark and Meyer
@22#, thermotropic smectic-A liquid crystals are very sensi
tive against dilatations of the layers. Above a very small,
finite, critical dilatation, the liquid crystal develops undul
tions of the layers to reduce the strain locally. Oswald a
Ben-Abraham considered dilated smecticA under shear@23#.
When a shear flow is applied~with a parallel orientation of
the layers!, the onset for undulations is unchanged only if t
wave vector of the undulations points in the vorticity dire
tion ~a similar situation was later considered in Ref.@24#!.
Whenever this wave vector has a component in the fl
direction, the onset of the undulation instability is augmen
by a portion proportional to the applied shear rate. No de
bilizing mechanism for well aligned parallel layers is prese
in the standard smectic-A hydrodynamics.

Recently, we proposed an extended hydrodynamic
scription@25,26# of smectic-A liquid crystals. Using both, the
©2002 The American Physical Society07-1
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AUERNHAMMER, BRAND, AND PLEINER PHYSICAL REVIEW E66, 061707 ~2002!
director of the underlying nematic order and the layer norm
of the smectic layers, we showed the possibility of a she
induced undulation instability in well aligned parallel layer
Within the framework of irreversible thermodynamic
~which allows the inclusion of dissipative as well as reve
ible effects! we derived macroscopic hydrodynamic equ
tions for the system and performed a linear stability analy
of these equations~using a number of approximations!. As
always, a linear stability analysis is limited to the onset
the first instability. Other theoretical approaches to these
orientation phenomena have been undertaken by Bruin
and Rabin@27#, Zilman and Granek@28# ~both papers con-
sider the influence of the shear on layer fluctuations! and
Williams and MacKintosh@29# ~minimizing a free energy
density including a coupling to the applied shear stress!. To
our knowledge, no macroscopic hydrodynamic approach
sides Refs.@25,26# has been published up to now.

The present paper is structured as follows. After a b
review of the model in Sec. II A and its implementation
Sec. II B we extend the basic model of Refs.@25,26# in the
following sections. Especially, we include the cross coupl
to the velocity field and the moduli of the nematic and sm
tic order parameters. It turns out that the coupling terms
the velocity are important since they can change the crit
parameters significantly. We find that the moduli of the ord
parameters also show undulations and, thus, regions w
reduced order parameter can be identified. The compar
of the different levels of approximations shows that the ba
model is contained in this more general analysis as a spe
case. We also compare our results to experiments and
lecular dynamic simulations and show that an oscillatory
stability is extremely unlikely to occur.

II. MODEL AND TECHNIQUE

A. Physical idea of the model

In a smectic-A liquid crystal one can easily define tw
directions: the normal to the layersp̂ and an average over th
molecular axes, the director,n̂. In the standard formulation
of smectic-A hydrodynamics, these two directions are par
lel by construction. Only in the vicinity of phase transition
~either the nematic–smecticA or smecticA–smecticC* ) it
has been shown that director fluctuations are of physica
terest@30–32#. Nevertheless,n̂ and p̂ differ significantly in
their interaction with an applied shear flow.

We consider a situation, as shown in Fig. 1. A w

FIG. 1. At the level of the approximation we use in this pap
all experimental shear geometries are equivalent to a simple st
shear. We choose our system of coordinates such that the norm
the plates points along thez axis and the plates are located atz
56d/2.
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aligned smectic-A liquid crystal is placed between two pa
allel and laterally infinite plates. The upper plate~located at
z5d/2) moves with a constant velocityvW u5dġêx/2 to the
right and the lower plate~at 2d/2) moves with the same
velocity in the opposite direction (vW l52dġêx/2). Thus the
sample is submitted to an average shear given byvu

2v l)/d5ġ. As mentioned above, a three-dimensional sta
of parallel fluid layers cannot couple directly to an appli
shear flow. Neither does the layer normal: it stays unchan
as long as the flow direction lies within the layers. In co
trast, it is well known from nematic hydrodynamics that t
director experiences a torque in a shear flow. This torq
leads—in the simplest case—to a flow aligning behavior
the director. The key assumption in the model of Ref.@25# is
that this torque is still present in a smectic-A liquid crystal
and acts only on the directorn̂ and not on the layer norma
p̂. An energetic coupling betweenn̂ and p̂ ensures that both
directions are parallel in equilibrium.

Submitted to a shear flow, the layer normal will stay u
changed, but the director will tilt in the direction of the flo
until the torques due to the flow and due to the coupling
the layer normal balance one another. For any given sh
rate a finite, but usually small, angleu betweenn̂ and p̂ will
result. This finite angle has important consequences for
layers. Since the preferred thickness of the layers is pro
tional to the projection of the director on the layer normal
finite angle between those two directions is equivalent to
effective dilatation of approximatelyu2/2 ~see Fig. 2!. If we
assume a constant total sample thickness and exclude ef
of defects, the system can accommodate this constrain
layer rotations. A global rotation of the layers is not possib
but they can rotate locally~as in the case of dilated smecticA
liquid crystals@21,22#!. This local rotation of the layers lead
to undulations, as shown in Fig. 3. These undulations a
compromise between the effective dilatation~which is not
favorable for the system! and the curvature of the layers du
to the undulations~which costs energy!. In the static case of
dilated smectic-A liquid crystals no direction is preferred, bu
Oswald and Ben-Abraham@23# have shown that this symme
try is broken if an additional shear is applied to the syste
In this case, the standard formulation of smectic-A hydrody-
namics predicts that the wave vector of the undulations w
point along the neutral direction of the shear. In this pa
we will assume that this result of Oswald and Ben-Abrah

,
dy
l to

FIG. 2. A finite angleu betweenn̂ and p̂ leads to a tendency o
the layers to reduce their thickness. Supposing a constant numb
layers in the sample, this tendency is equivalent to an effec

dilatation of the layers. For small angles betweenn̂ and p̂ the rela-
tive effective dilation is given byu2/2.
7-2
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SHEAR-INDUCED INSTABILITIES IN LAYERED LIQUIDS PHYSICAL REVIEW E66, 061707 ~2002!
also holds in the case of our extended formulation
smectic-A hydrodynamics~see Fig. 3!.

B. Implementation of the model

To generate the macroscopic hydrodynamic equations
follow the procedure given by the framework of irreversib
thermodynamics@33#. This method has successfully been a
plied in many cases to derive the macroscopic hydrodyna
equations of complex fluids~see, e.g., Refs.@18,20,25,34#!.
The advantage of this method is its systematic way of ded
ing the governing equations. Once the set of variable
given, the macroscopic hydrodynamic equations follow
applying basic symmetry arguments and thermodyna
considerations.

Let us briefly review the essential ingredients to this p
cedure~for more details of the method, see Ref.@20#, and for
our model, see Ref.@25#!. For a given system the hydrody
namic variables can be split up in two categories: variab
reflecting conserved quantities~e.g., the linear momentum
density, the mass density, etc.! and variables due to sponta
neously broken continuous symmetries~e.g., the nematic di-
rector or the layer displacements of the smectic layers!. Ad-
ditionally, in some cases, nonhydrodynamic variables~e.g.,
the strength of the order parameter@35#! can show slow dy-
namics that can be described within this framework~see,
e.g., Refs.@20,34#!.

Using all these variables, the relations, which form t
starting point for the further calculations, can be construc
These relations are: the energy densitye, the dissipation
function R, the Gibbs relation-, and the Gibbs-Duhem re
tion. To illustrate the idea of our model, we split upe andR
into several parts according to the different origin of t
variables: conserved quantities~index cons!, symmetry vari-
ables~index sym!, and the modulus of the order parame
~index ord!, In the spirit of our model, two order paramete
play a role: the nematic tensorial order parameterQi j and the
smectic-A complex order parameterF. For practical reasons
we use the directorn̂ and the modulusS(n) in the uniaxial
nematic case@Qi j 5

3
2 S(n)(ninj2

1
3 d i j )# and the layer dis-

placementu and the modulusS(s) in the smectic-A case
@F5S(s) exp$iq0(z2u)%#. Here, as in the rest of the paper, w
refer to the system of coordinates defined in Sec. II A.
note thatu is only a good variable if we consider sma
deformations of the layers. For large layer deformations
phasew5z2u is the appropriate variable@36,37#. In our
further discussion, we will concentrate on the parts due

FIG. 3. Above a certain threshold the effective dilatation due
the director tilt will lead to buckling of the layers. Note the diffe
ence in directions: the director is tilted in the flow directio
whereas the wave vector points along they axis. This configuration
cancels the direct coupling between the flow and the buckling.
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symmetry variables and the order parameters, while
terms already present in the isotropic fluid see, e.g., R
@20,33#.

Let us first consider the energy density. The conventio
of notation introduced by the following equations are su
marized in Table I.

e5econs1esym1eord
(n) 1eord

(s) , ~1!

econs, which is identical to the isotropic fluid, is discusse
elsewhere@20,33#. The symmetry part reads,

esym5
1

2
K1~¹•n̂!21

1

2
K2@ n̂•~¹3n̂!#2

1
1

2
K3@ n̂3~¹3n̂!#2

1
1

2
K~¹'

2 u!2

1
1

2
B0F¹zu1~12nz!2

1

2
~¹'u!2G2

1
1

2
B1~ n̂3 p̂!2. ~2!

In Eq. ~2! the spirit of the model becomes clear. We combi
the properties of a nematic liquid crystal~the first two lines!
with these of a smecticA ~the third and fourth line! and
couple both parts~the last line! in such a way thatn̂ and p̂
are parallel in equilibrium. As already discussed earlier@25#,
esym simplifies considerably by dropping higher-order term
and assuming a small angle betweenn̂ and p̂. Splay defor-
mations of the director are generally considered as high
order corrections to dilatations of the smectic layers. Tw
deformations are forbidden in standard smectic-A hydrody

o

TABLE I. Summary of the notation. In these definitions we u
the transverse Kronecker symbold i j

'5d i j 2ninj . Due to the ther-
modynamic stability of the systems, the following combinations
constants must be positive:B0 , B1 , K, L0 , L'

(n,s) , L i , and M0
2

2KL i . For the last relation we used the equivalence ofK andK1.

Symbol Explicit form Comment

K K Bending modulus of layers
B0 B0 Compressibility of layers
B1 B1 Coupling between the director

and the layer normal
L0

(n,s) L0
(n,s) Variations of the order

parameter~nematic and
smectic, respectively!

L1,i j
(n) L'

(n)d i j
'1L i

(n)ninj Gradient terms of the order
parameter~nematic!

Mi jk M0(d i j
'nk1d ik

' nj ) Cross coupling between the
director and order parameter

~nematic!
L1,i j

(s) L'
(s)(d i j 2pipj ) Gradient terms of the order
1L i

(s)pipj parameter~smectic!
7-3
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AUERNHAMMER, BRAND, AND PLEINER PHYSICAL REVIEW E66, 061707 ~2002!
namics and must be small as long as the angle betweenn̂ and
p̂ is small. Additionally, the difference between the spl
deformation of the director fieldK1/2(“•n̂)2 and bending of
the layersK/2(¹'

2 u)2 is negligible. Consequently, we com
bine splay and bend in a single term with a single ela
constant which we callK8: K1/2(“•n̂)21K/2(¹'

2 u)2

'K8/2(¹'
2 u)2. In the following, we drop the prime and ca

the new elastic constantK. The approximated version ofesym
is now given by

esym5
1

2
K~¹'

2 u!21
1

2
B0F¹zu1~12nz!2

1

2
~¹'u!2G2

1
1

2
B1~ n̂3 p̂!2. ~3!

In our model the moduli of the nematic and smectic ord
parameters play similar roles, so we will deal with bo
Since we consider a situation beyond the phase trans
regime, the equilibrium value of the order parameter is n
zero (S0

(n,s) , for both nematic and smectic! and only its
variationss(n,s) can enter the energy density (S(n,s)5S0

(n,s)

1s(n,s)),

eord
(n) 5

1

2
L0~s(n)!21

1

2
L1,i j

(n) ~¹is
(n)!~¹j s

(n)!1Mi jk¹jni¹ks
(n),

~4!

eord
(s) 5

1

2
L0~s(s)!21

1

2
L1,i j

(s) ~¹is
(s)!~¹j s

(s)!. ~5!

By a similar construction we write down the dissipatio
function as~see Table II for a list of the thermodynam
variables and their conjugates!

R5Rcons1Rsym1Rord , ~6!

Rcons5
1

2
n i jkl ~¹jv i !~¹lvk!1R0 , ~7!

Rsym5
1

2g1
hid i j

'hj1lpC2, ~8!

Rord5
1

2
a (n)J (n)21

1

2
a (s)J (s)2, ~9!

TABLE II. Variables and their conjugates, i.e., the correspon
ing thermodynamic forces.

Name Variable Conjugate

Mass density r m
Momentum density gW vW

Nematic director n̂ hW

Smectic layer displacement u C

Variation of the modulus of the order
parameter~either nematic or smectic!

s(n,s) J (n,s)
06170
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where R0 summarizes further terms due to conservatio
laws, which do not enter our further calculation, and~after
Ref. @38#!

n i jkl 5n2~d j l d ik1d i l d jk!

12~n11n222n3!ninjnknl

1~n32n2!~njnld ik1njnkd i l

1ninkd j l 1ninld jk!

1~n42n2!d i j dkl

1~n52n41n2!~d i j nknl1dklninj !. ~10!

As mentioned in Sec. II A we consider a shear induc
smectic-C-like situation ~but with a small tilt angle, i.e., a
weak biaxiality!. We neglect this weak biaxiality in the vis
cosity tensor and use it in the uniaxial formulation giv
above~with the directorn̂ as the preferred direction!. This
assumption is justified by the fact that the results presen
in this paper do not change significantly if we usep̂ instead
of n̂ in the viscosity tensor.

Throughout our calculations, we will not assume any
striction on the viscosity constants except the usual requ
ments due to thermodynamic stability~see, e.g., Ref.@20#!.
Later on, we will impose the incompressibility of the fluid b
assuming a constant mass densityr of the fluid. We empha-
size that this procedure does not require any further assu
tion about the material parameters.

The set of basic equations is completed by the Gib
Duhem relation~the local formulation of the second law o
thermodynamics! and the Gibbs relation~which connects the
pressureP with the other thermodynamic quantities!, which
we will use in the following form:

de5de01vW •dgW 1w i j d¹jni1hi8dni1J8(n)ds(n)

1J9 i
(n)d¹is

(n)1J8(s)ds(s)1J9 i
(s)d¹is

(s), ~11!

P52e1mr1Ts1vW •gW . ~12!

The newly defined quantities in Eq.~11! are connected to the
thermodynamic forces~Table II! by the following relations:

hi5hi82¹jw i j 5
de

dni
, ~13!

C52¹ic i5
de

du
, ~14!

J (n,s)5J8(n,s)2¹iJ9 i
(n,s)5

de

ds(n,s)
. ~15!

Following the standard procedure within the framewo
of irreversible thermodynamics we find the following set
macroscopic hydrodynamic equations@20,25,33,34#,

]

]t
u1v j¹ju5vz2lpC, ~16!

-

7-4
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]

]t
ni1v j¹jni5

1

2
@~l21!d i j

'nk1~l11!d ik
' nj #¹jvk

2
1

g1
d ik

' hk , ~17!

05¹iv i , ~18!

rS ]

]t
v i1v j¹jv i D52¹j H c j~¹iu1d i3!1b i j

(n,s)J (n,s)

2
1

2
@~l21!d jk

' ni1~l11!d ik
' nj #hk

1n i jkl ¹lvkJ 2¹i P, ~19!

]

]t
s(n,s)1v j¹j s

(n,s)52b i j
(n,s)¹jv i2a (n,s)J (n,s). ~20!

For the reversible parts of the equations some coupling c
stants have been introduced. The flow-alignment tensor

l i jk5
1

2
@~l21!d i j

'nk1~l11!d ik
' nj #, ~21!

with the flow-alignment parameterl ~and usingd i j
'5d i j

2ninj ) and the coupling between flow and order parame

b i j
(n)5b'

(n)d i j
'1b i

(n)ninj , ~22!

b i j
(s)5b'

(s)~d i j 2pipj !1b i
(s)pipj . ~23!

Furthermore, there is a reversible coupling between the la
displacement and the velocity field in Eq.~16!. But its cou-
pling constant has to be unity due to the Gallilei invarian
of the equations. As mentioned above, the use ofu is limited
to small layer deformations.

The transverse Kronecker symbolsd i j
' in Eqs. ~17! and

~21! guarantee the normalization ofn̂. This implies that only
two of the Eqs.~17! are independent. For the following ca
culations it turned out to be useful to guarantee the norm
ization of the director by introducing two angular variablesu
andf to describe the director,

nx5sinu cosf, ~24!

ny5sinu sinf, ~25!

nz5cosu. ~26!

Consequently, Eqs.~17! have to be replaced using angul
variables. Denoting the right-hand side of Eqs.~17! with Yi ,
this can be done the following way:

]

]t
u1v j¹ju5Yx cosu cosf1Yy cosu sinf2Yz sinu,

~27!
06170
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]

]t
f1v j¹jf52Yx

sinf

sinu
1Yy

cosf

sinu
. ~28!

In the same way, we guarantee the normalization ofp̂ by
using

px50, ~29!

py52¹yu, ~30!

pz5A12py
2. ~31!

The different ways of normalizingn̂ and p̂ arise from the
fact that p̂ is parallel toêz in zeroth order, whereasn̂ en-
closes a finite angle withêz for any given shear rate.

The set of macroscopic hydrodynamic equations we n
deal with ~16!,~18!–~20!,~27!,~28! follows directly from the
initial input in the energy density and the dissipation functi
without any further assumptions.

To solve these equations we need suitable boundary
ditions. In the following we will assume that the boundari
have no orienting effect on the director~the homeotropic
alignment of the director is only due to the layering and t
coupling between the layer normalp̂ and the directorn̂).
Any variation of the layer displacement must vanish at
boundaries,

uS 6
1

2
dD50. ~32!

For the velocity field the situation is a little more comple
We assume no-slip boundary conditions, i.e., the velocity
the fluid and the velocity of the plate are the same at
surface of the plate. It is convenient to split the velocity fie
in two parts: the shear fieldvW 0 which satisfies the governing
equations and the no-slip boundary condition and the cor
tion vW 1 to this shear field. The boundary condition forvW 1
now reads,

vW 1S 6
1

2
dD50. ~33!

Making use of the following considerations this conditio
can be simplified. Due to Eq.~16! the z component ofvW 1 is
suppressed by a factor oflp ~which is typically extremely
small @19,23#!. Making use of the results of Ref.@23# we can
assume thatvW 1 depends only ony and z and thus conclude
@with Eq. ~18!# that they component ofvW 1 is also suppressed
by lp . For this reason, one can assume thatv1,y andv1,z are
negligible and the only relevant boundary condition for t
velocity field is

v1,x50. ~34!

The validity of this assumption is nicely illustrated by o
results. Figure 7 shows thatvy andvz are indeed suppresse
by lp .
7-5
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C. Technique of solution

The aim now is twofold. Finding a spatially homogeneo
solution of the governing equations~for a given shear rate!
and investigating the stability of this solution. In this secti
we will describe the general procedure and give the result
Sec. III.

We write the solution as the vector XW
5(u,f,u,vx ,vy ,vz ,P,s(n,s)) consisting of the angular vari
ables of the director, the layer displacement, the velo
field, the pressure, and the modulus of the~nematic or smec-
tic! order parameter. For a spatially homogeneous situa
the equations simplify significantly and the desired solut
XW 0 can directly be found~see Sec. III A!. To determine the
region of stability ofXW 0 we perform a linear stability analy
sis. That is, we add a small perturbationXW 1 to the homoge-
neous solutionsX0 : XW 5XW 01XW 1 ~with XW 1!XW 0) and linearize
the governing equations in the small perturbations. In sh
the solution of the equationLXW 15]/]tXW 1 is analyzed. HereL
denotes the operator for the linearized set of the govern
equations. The ansatz for the unknown quantities must fu
the boundary conditions@see the discussion following Eq
~32!# and follow the symmetry scheme given by Table I
Assuming an exponential time dependence and harm
spatial dependence ofXW 1,

X1,i;expF S iv1
1

t D t G H cos~qy!

sin~qy!
J H cos~qzz!

sin~qzz!
J , ~35!

fulfills all requirements~with an oscillation ratev, a growth
rate 1/t, and a wave vectorqW 5qêy1qzêz). In this ansatz we
made use of the results of Oswald and Ben-Abraham@23#,
who have shown that in standard dilated smecticA under
shear the first instability will set in with a wave vector alon
the neutral direction of the flow (qW •êx50). After inserting
the above ansatz in the linearized set of~partial differential!
equations, a set of coupled linear equations is obtaine
determine 1/t andv. From the standard smectic-A hydrody-
namics it is known that shear does not destabilize the lay
Since our extended formulation of the smectic-A hydrody-
namics is equivalent to the standard smectic-A hydrodynam-
ics for vanishing external fields~e.g., shear rate!, we assume
that the layers are stable for low enough shear rates,
1/t,0 for small shear rates. So 1/t50 marks the set of

TABLE III. If the symmetry under inversion ofz is given for

one component ofXW 1, the symmetry of all other components fo
lows directly from the linearized set of equations. Here we give
z symmetry of all components, assuming thatu is an even function
of z.

Quantity z symmetry Quantity z symmetry

u Even vx Even
u Odd vy Odd
f Even vz Even
P Odd s(n,s) Odd
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external parameters~shear rate! and material parameter
above whichXW 1 grows. Typically we hold the material pa
rameters fixed and the only external parameter is the s
rate. The solvability condition of the corresponding set
linear equations gives a relation between the shear rate@and
tilt angle u0, which is directly connected to the shear ra
see Eq.~38! below#, v, and the wave vectorq. For every
givenq a specific shear rate~and tilt angleu0) can be deter-
mined which separates the stable region~below! from the
unstable region~above!. This defines the so called curve o
marginal stability~or neutral curve! u0(q). If, for any given
set of external parameters, the tilt angleu0 lies above the
curve of marginal stability for at least one value ofq, the
spatial homogeneous state is unstable and undulations g
The smallest shear rate~tilt angle! for which undulations can
grow is called the critical shear rate~tilt angle!. Technically
speaking, we solveLXW 5 ivXW —in many cases we can setv
50, see below. We point out that this linear analysis is o
valid at the point where the first instability sets in. Witho
further investigations no prediction of the spatial structure
the developing instability can be made. Also, the nature
the bifurcation~backward or forward! must be determined by
further investigations.

For practical reasons we used dimensionless units in
numerical calculations. The invariance of the governi
equations under rescaling time, length, and mass allows u
choose three parameters in these equations to be equ
unity. We will set

B151, g151, and
d

p
5qz51 ~36!

and measure all other quantities in the units defined by
choice. Nevertheless, we will keep these quantities explic
in our analytical work.

To extract concrete predictions for experimental para
eters from our calculations is a nontrivial task, because n
ther the energetic constantB1 nor the rotational viscosityg1
are used for the hydrodynamic description of the smecticA
phase~but play an important role in our model!. Therefore,
we here rely on measurements in the vicinity of the nemat
smectic-A phase transition. Measurements on low molecu
weight liquid crystals made by Litster@31# in the vicinity of
the nematic–smectic-A transition indicate thatB1 is approxi-
mately one order of magnitude less thanB0. As for g1, we
could not find any measurements that would allow an e
mate of its value in the smectic-A phase. In the nematic
phaseg1 increases drastically towards the nematic–smec
A transition~see, e.g., Ref.@39#!. Numerical simulations on a
molecular scale are also a promising approach to determ
these constants@40#.

Due to the complexity of the full set of governing equ
tions, we will start our analysis with a minimal set of var
ables (u, f, andu) and suppress the coupling to the oth
variables~see Sec. III B 1!. Step by step, the other variable
will be taken into account. The general picture of the ins
bility will turn out to be already present in the minima
model, but many interesting details will be added through

e

7-6



ve
n
i-
e

v
le

-
tio

pl
t

hi

r t

-

ul
ow
an

on
ra

pa-

rd-
r
et

the
m-
ma-

and-

t

e
nu-

xi-

ur
in
s.

y a
cal
ity

ude
ys

a

even
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the next sections. In comparison to our earlier work@25# we
now use the way of normalizingn̂ andp̂ derived above. This
will lead to some small differences in the results but lea
the general picture unchanged. First we assume a statio
instability ~i.e., we letv50); later on we discuss the poss
bility for an oscillatory instability and have a look at som
special features of the system~Secs. III C and III D!.

III. RESULTS AND DISCUSSION

A. Spatially homogeneous state

Looking for a spatially homogeneous solution, the go
erning equations simplify significantly. A linear shear profi

vW 05ġzêx ~37!

is a solution to Eq.~19! and u stays unchanged in this re
gime. The only variables that have a zeroth order correc
for all shear rates are the tilt angleu and the modulus of the
nematic order parameterss(n),

S l11

2
2l sin2~u0! D ġ5

B1

g1
sin~u0!cos~u0!

1
B0

g1
sin~u0!@12cos~u0!#,

~38!

a (n)L0s0
(n)5~b i

(n)2b'
(n)!sin~u0!cos~u0!ġ. ~39!

Equation~39! shows that nematic degrees of freedom cou
to simple shear, but not the smectic degrees of freedom;
modulus of the nematic order parameter has a nonvanis
spatially homogeneous correction@see Eq.~39!#, whereas the
smectic order parameter stays unchanged. The reason fo
difference lies in the fact thatb i j

(n) andb i j
(s) includen̂ and p̂,

respectively, which coupled differently to the flow field@see
Eqs.~22! and~23!#. Equation~38! gives a well defined rela
tion between the shear rateġ and the director tilt angleu0,
which we will use to eliminateġ from our further calcula-
tions. To lowest order,u0 depends linearly onġ,

u05ġ
g1

B1

l11

2
1O~u0

3!. ~40!

We are not aware of any experimental data, which wo
allow a direct comparison with these results. We stress, h
ever, that molecular dynamics simulations by Soddem
et al. @40# are in very good agreement with Eqs.~38! and
~40!.

In contrast to the director tilt, the lowest-order correcti
to the nematic order parameter is quadratic in the shear
~tilt angle!,

s0
(n)5

2

l11

B1

g1

b i
(n)2b'

(n)

a (n)L0

u0
21O~u0

4!. ~41!
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In the following we consider perturbations around the s
tially homogeneous state given above.

B. Stationary instability

1. Minimal set of variables

Let us first consider the effect of our modifications rega
ing the normalization ofn̂ andp̂ in comparison to our earlie
results@25#. For this purpose we consider only a minimal s
of variables: the director~characterized by the two anglesu
and f) and the layer displacementu. We neglect all cou-
plings of these variables to other quantities describing
system, namely, the velocity field and the moduli of the ne
atic and smectic order parameters. Within these approxi
tions the equations to solve are,

05AuH 2ġl sin~u0!cos~u0!1
B0

g1
@sin2~u0!2cos2~u0!

1cos~u0!#2
B1

g1
@sin2~u0!2cos2~u0!#J

2Au

B0

g1
sin~u0!qz , ~42!

05Af

1

2
ġ~l11!2Au

B1

g1
q, ~43!

05AulpB0 sin~u0!qz1AflpB1q sin~u0!cos~u0!

2Aulp@2B0q2@12cos~u0!#1B1q2 cos2~u0!

1Kq41B0qz
2#. ~44!

Here we inserted an ansatz of the type~35! and denoted the
linear amplitudes ofu, f, and u by Au , Af , and Au , re-
spectively. One can solve these equations either by exp
ing them in a power series ofu0 ~expecting to get a closed
result for the critical values! or numerically. It turns out, tha
one has to take into account terms~at least! up to orderu0

5 in
Eqs.~42!–~44! to get physically meaningful~but rather long
and complicated! analytical results. For this reason th
closed expressions have no advantage over the purely
merical solutions and we do not give the analytical appro
mations explicitly. A comparison with the results of Ref.@25#
will be given in Appendix A. We will present and discuss o
findings using the minimal set of variables in Sec. III B 2,
direct comparison to the results of the full set of equation

2. Coupling to the velocity field

In the preceding section we have shown that alread
minimal set of variables supports our picture of the physi
mechanism. But neglecting the coupling between veloc
field and nematic director and vice versa is a rather cr
approximation since it is well known that this coupling pla
an important role in nematic hydrodynamics@19,20#. So the
natural next step is to include this coupling and to perform
linear stability analysis of Eqs.~16!–~19!, ~27!,~28!. In this
case, the standard procedure leads to a system of s
7-7
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coupled linear differential equations. Following the discu
sion after Eq.~32! these equations can be solved by an ans
of the type given in Eq.~35!. This reduces the system o
equations to seven coupled linear equations which are e
solved using standard numerical tools~such as singular value
decomposition and inverse iteration to find the eigenvecto!.
Due to the complexity of the equations, we used Maple
determine the final set of linear equations. The key ingre
ents of this Maple script are given in Appendix B.

Figure 4 gives a comparison of typical neutral curves
the minimal model and calculations including the veloc
field. The overall shape of the neutral curve is not chan
due to the coupling to the velocity field but a shift of th

FIG. 4. A typical picture for the comparison of the neutr
curves using the minimal set of variables ( ) and including the
velocity field ( ). The overall behavior does not change, b
the critical values are altered due to the coupling with the velo
field. For this plot we used~in the dimensionless units discussed
Sec. II C! B0510, K51026, l51.1, n15n25n35n45n550.1,
and lp51026. The inset shows the linear amplitudesAi ~where i
stands foru, f, etc! at onset. Since the logarithm of the amp
tudes is shown, amplitudes with different sign are shown with
different line style. Using the minimal set~left bars! all amplitudes
have the same sign ( ). Including the velocity field~right bars!
some amplitudes are positive ( ), others negative (. . . ).
Note that we use in this and all following plots the dimensionle
units defined by Eq.~36!.

FIG. 5. A significant difference between the various approac
is only visible forB0&100. At higher values ofB0 the number of
free variables plays no noticeable role and the critical values fol
a master curve. The solid lines ( ) show results including the
velocity field, the dashed lines ( ) correspond to the minima
set of variables. At lowB0 in the upper curves we usedl52.
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critical values~especially in the critical tilt angle! is already
visible. The inset shows the relative amplitudes of the lin
solutions at onset on a logarithmic scale. Foru, f, andu the
left bars correspond to the minimal model and the right b
to the extended version. Note that amplitudes with a differ
sign are shown with a different line style in the histogram
~see figure caption for details!.

Let us have a closer look at the differences between
minimal and the extended set of equations and follow th
differences along some paths in the parameter space
mentioned in Sec. II C, we can omit some of the physi
parameters by using dimensionless parameters. In Figs.
we show the dependence of the critical values of the
angle and wave vector on the dimensionless parameters@as
defined in Eq.~36!#. For all these figures we used the sam
basic set of parameters:B0510, K51026, l51.1, n15n2
5n35n45n550.1, andlp51026. These values are est
mates for a typical thermotropic LMW liquid crystal, wher
we made use of the results of Refs.@31,39# ~as far asB1 and
g1 are concerned, see also the last paragraph in Sec. III B!.
For flow alignment parameters in the range 1&l&3 the
critical values vary strongly withl ~see Fig. 9!. Therefore
we discuss in addition the situation forl52 to indicate the
range of possible values.

t
y

a

s

s

w

FIG. 6. Plotting the critical values as a function of the bendi
modulusK shows a convergence of the curves, which is, nevert
less, not as pronounced as in the case of Fig. 5. The influencel
on the critical tilt angle is significant (l52 in the upper curves and
l51.1 in the lower ones!. Again the solid lines ( ) show results
including the velocity field and the dashed lines ( ) corre-
spond to the minimal set of variables.

FIG. 7. In all our calculationsv1,x is the dominating componen

of vW 1. This graph demonstrates that the other components are
pressed bylp ~making them almost negligible!.
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Considering the critical values as a function of the co
pression modulusB0 results in a rather simple situation~Fig.
5!. For small values ofB0 a significant influence of the cou
pling between the director and velocity field is appare
which also shows a strong dependence onl. For largeB0 all
these differences vanish and only one single curve is
tained. At this point a comparison to dilated smecticA is
instructive. It is well known@21,22# that in a dilated smectic
the critical wave vector and the critical dilatation show
power law behavior as a function ofB0 with exponents 1/4
and21/2, respectively. In the limit of largeB0 we found the
same exponents already in our earlier analysis@25#. If we fit
power laws to our results forB0.102 we find the exponents
equal to'0.235 and'20.37 for qc and uc , respectively
~note that the dilatation in our model is' 1

2 uc
2). So both

approaches~the minimal set of variables and the calculatio

FIG. 8. Only the viscositiesn2 andn3 can influence the critica
parameters significantly. The upper row depicts the dependenc
a isotropic variation of the viscosity. In the middle and lower ro
we present the variation withn2 andn3 setting the other viscositie
to n i50.1. Here the thick solid lines represent the minimal set
variables. For the full set of variables we have chosen four differ
values ofl: the thin solid curves withl50.7, the dashed curve
with l51.1, the dotted curves withl52, and the dot-dashed
curves withl53.5. Note the similarities between the curves f
small and largel in the upper and middle rows. In these regimesn2

is the dominating viscosity.
06170
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including the velocity field! show, despite all similarities to
the standard model of smecticA and to our earlier analysis
differences in the details of the instability.

A similar, but less pronounced, situation is apparent, wh
plotting the critical values as a function of the bendi
modulus~see Fig. 6!. The curves tend to converge for larg
K, but there remains a difference between the minimal se
variables and the calculations including the the velocity fie
Fitting the K dependence with power laws~here for K
.1024) only the critical wave number exhibits an expone
close to the values expected from dilated smec
A('20.26 vs2 1

4 ). This illustrates the fact that shearing
lamellar system is similar to dilating it but not equivalent.

In contrast to the cases discussed above, the perme
constantlp has no strong influence on the critical values. F
dimensionless valueslp,1026 the critical values do not
change at all withlp . For large values, variations within
factor of two are possible. The permeation constant is kno
to be very small. In our dimensionless units we expect it
be of the order of,1029 for LMW thermotropic liquid crys-
tals and neglect its influence on the critical values for t
reason. In Sec. II B we have emphasized that they and z
components of the velocity field are suppressed vialp .
These qualitative arguments are clearly confirmed by our
merical results: In all our calculationsv1,x is the dominating
component ofvW 1 and the ratiov1,y /v1,x is of the order oflp
over the whole range of physical relevant values oflp ~see
Fig. 7!. This fact nicely supports our argument that we c

on

f
t

FIG. 9. Plotting the critical values as functions of the flow alig
ment parameterl reveals an interesting structure for 1&l&3. In
the upper row we plot this dependence for a set of~isotropic! vis-
cosities ranging fromn i51 ~thick solid line! down to n i51023

~thick dashed line!. The dotted line reveals that this dependence
l is absent in the minimal model. The lower row illustrates t
behavior for varying layer compressibilityB0 with B0'3 for the
thick solid curve andB05100 for the thick dashed curve. In a
plots the thin solid lines give the behavior for some intermedi
values. For an interpretation of this behavior see the text.
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neglect the boundary condition forv1,y , becausev1,y van-
ishes anyway.

Out of the five viscosities only two (n2 and n3) show a
significant influence on the critical values. In Fig. 8 w
present the dependence ofuc andqc on an assumed isotropi
viscosity~upper row! and on these two viscosity coefficien
~middle and lower row!. Since the flow alignment paramete
l has remarkable influence on these curves, we have ch
four different values ofl in this figure, namely,l50.7, l
51.1, l52, andl53.5. The curves forl&1 andl*3 for
an isotropic viscosity tensor are very similar to the cor
sponding curves where onlyn2 is varied. In this paramete
range the coefficientn2 dominates the behavior. Note that th
influence ofn3 on the critical values is already much small
than that ofn2. We left out the equivalent graphs for th
other viscosity coefficients, because they have almost no
fect on the critical values. For further comments on the
fluence of an anisotropic viscosity tensor see also Sec. II

All the parameters we have discussed up to now cau
variations in the critical values that did not select spec
values of the considered parameter. In this aspect the s
tion is completely different in the case of the flow alignme
parameterl. As shown in Fig. 9, there is a clear change
behavior forl'1 and l'3. The critical tilt angle is in-
creased for values ofl in this interval and the critical wave
vector tends to rise only at the boundaries of the interval
is reduced in between. Figure 9 illustrates how this struct
depends on the viscosities~assuming all five viscosities to b
equal! and on the elastic constants of the layers. In the fi
row we follow this behavior for viscosities varying fromn i
51 down ton i51023. Clearly, the influence ofl is more
pronounced the lower the viscosities are. Both elastic c
stants of the layers, the compressibilityB0 and the bending
modulusK ~in our dimensionless unitsB151), have, in gen-
eral, a similar influence on the shape of the graphs:
smaller the elastic constants are, the more pronounced
structure becomes. For this reason we just give the plot
B0 ~second row in Fig. 9! and omit the plot forK.

These dependencies on the system parameters give
important hints for an interpretation of Fig. 9. The curren
and quasicurrents for the velocity field and the director c
sist of two parts@see Eqs.~17! and ~19!#: a diagonal one
~coupling, e.g., the components ofvW among each other! and
an off-diagonal one~coupling the director to the velocity
field!. The former ones are proportional to the elastic co
stants or to the viscosity tensor, whereas the latter one
function of the flow alignment parameter. So reducing eit
the elastic constants or the viscosities increases the portio
the cross-coupling terms in these equations. That is, the
served tendencies are exactly what one would expect.
next step in the interpretation of the shape of the curves i
have a closer look at the structure of the cross-coupling te
The flow alignment tensor l i jk5 1

2 @(l21)d i j
'nk1(l

11)d ik
' nj # obviously changes its behavior forl51: the first

part changes its sign. Note that we are in a region of
parameter space, wherel i jk is a dominating term~since ei-
ther the viscosities or the elastic constants are small!. Addi-
tionally, d i j

'nk contains up to the third power of one direct
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component. For this reason, we expect that—in the line
ized set of equations—some coupling terms change t
sign for l51, others forl53. For example, thef compo-
nent of the director is coupled to thex andz component of
the velocity field by the terms (l21)/2¹yvx and (l
21)/2 cot(u0)¹yvz. Similarly, the reversible part of the cou
pling of vy to f vanishes forl53. The monitored structure
in the plots cannot be attributed to one single cross-coup
term, but the given examples demonstrate that someth
should happen in this parameter range.

3. Including the order parameters

In the preceeding paragraphs we investigated undulat
assuming a constant modulus of the order parameterS(n,s)

5S0
(n,s)1s0

(n,s) . In general, one would expect that the und
lations in the other observable quantities should couple
some extent to the order parameter. In the formulation of
free energy~see Sec. II B! we have assumed thatS(n,s) varies
only slightly aroundS0

(n,s) and thus only the lowest-orde
terms ins(n,s) contribute to the free energy. For the spatia
homogeneous state we had@see Eqs.~39! and~41!# a correc-
tion to the nematicS(n) proportional to the square of th
shear rate (u0;ġ for low ġ),

s0
(n)5 2

2

l11

B1

g1

b i
(n)2b'

(n)

a (n)L0

u0
21O~u0

4!.

As a consequence,s0
(n) must be small compared toS0

(n,s)

~which is by construction limited to the range 0<S0
(n,s)

<1). Thus a reasonable restriction is

us0
(n)u&0.5. ~45!

As shown in Fig. 10, evaluating this relation at the onset
the instability reduces significantly the physically reasona
range for some parameters. This restriction applies only
the nematic material parameters and, in general, nothing
be said about the corresponding smectic parameters. We
however, take the smectic parameters in the same rang
the nematic ones. If not indicated otherwise we us

FIG. 10. Evaluating Eqs.~41! and~45! at onset gives an impor
tant restriction on the range of possible parameter values~here the
cases ofa (n) andb i

(n)2b'
(n)). Note that the criticalu0 is a function

of the material parameters.
7-10
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L0
(n,s)50.1, L'

(n,s)50.01, L i
(n,s)2L'

(n,s)50.005, M0

51024, b'
(n,s)50.01, b i

(n,s)2b'
(n,s)50.005, a (n,s)50.001

for the plots of this section~along with parameter set spec
fied in the preceding section!.

The ansatz fors1
(n,s) following Eq. ~35! reads

s1
(n,s)5As

(n,s) expF S iv1
1

t D t Gsin~qzz!cos~qy!. ~46!

The modulations ofS(n,s) in the linear analysis are maximum
at the boundaries and in phase with the layer displacemeu.
The sign of the amplitudeAs

(n,s) depends on the coupling t
the velocity field~only the anisotropic partb i

(n)2b'
(n) is rel-

evant! and on the coupling to the director undulations~via
Mi jk , only for the nematic amplitudesAs

(n)). If one assumes
that shear reduces~and does not increase! the modulus of the
order parameter, the nematicb i

(n)2b'
(n) is positive@Eqs.~39!

and ~41!#; once again nothing can be said about the sme
b i

(s)2b'
(s) .

In general, the critical values are not at all or only ve
slightly influenced by the coupling to the modulus of t
order parameter~see Fig. 11!. Figure 11 summarizes the pa
rameters with the largest influence onAs

(n,s) . In almost all
investigated cases the modulation of the nematic orde
much larger than in the smectic order. Whether the orde
reduced or increased in regions where the layers are c

FIG. 11. Out of the material parameters connected with the
der parameter, onlyb i

(n,s)2b'
(n,s) has a measurable effect on th

critical values. Some more parameters can influence the amplit
of the order parameter undulation, namely,L'

(n,s) andM0 ~the latter
one is only present in the case of the nematic order parameter!. All
amplitudes have been normalized such thatAf51. Note that the
smecticAs

(s) has been multiplied by 103 in the right column. For a
better comparison we used a log-log scale in the lower left plot
changed the sign ofAs

(s) in this plot.
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pressed depends in the phenomenological constantsb i
(n,s)

2b'
(n,s) andM0, which have not been measured up to no

The above results reveal some interesting features.
shown in Table III, the modulations of the order parame
change sign under inversion of thez axis. Considering the
boundary condition~i.e., taking our ansatz!, this leads to the
fact that the effect on the modulus of the order parameter
maximum at the boundaries. So the linear analysis pred
that the regions where the order parameter is influenced m
by the undulations are close to the boundaries. Since
probability for the formation of defects is higher in plac
where the order parameter is lower, we have identified ar
where the creation of defects is facilitated. But our analy
does not allow to predict the structure of the defects. Nev
theless, this effect gives a possible way to reorient the pa
lel layers. Interestingly, experiments in block copolymers
Laureret al. @3# show a defect structure close to the boun
aries, which is consistent with this picture.

C. Oscillatory instability

All our arguments in the previous sections were based
the assumption that the undulations set in as a station
instability. That is, that the oscillation ratev in our ansatz
Eq. ~35! vanishes at onset. In this section we will discuss
situation for nonzerov and find that our previous assump
tion was justified. In our linear analysis enters now~for the
first time in this paper! the mass density of the system, whic
we will choose to be equal to unity,r51.

The search for a possible oscillatory instability is sligh
different from the procedure used in the stationary case.
solvability condition of the linearized set of equations det
mines both the neutral curve and the frequency along
curve. When searching for such a solution we scanned
proximately the same parameter space as used for Figs.
Since the frequency tends to zero when the oscillatory n
tral curve gets close to the stationary one, we concentra
on the frequency range 0<v<2 and check in some case
for higher frequencies.

It turned out that only in cases when the director field
very weakly coupled to the layering a neutral curve for
oscillatory instability is possible. This weak coupling man
fests itself in smallB1 andg1, which is, in our set of dimen-
sionless variables, equivalent to largeB0 andn i . Oscillatory
neutral curves were only found forB0*100 orn i*1. In all
investigated cases a oscillatory neutral curve is either ab
or lies above the neutral curve for a stationary instabil
When an oscillatory neutral curve is possible, it ends in
points where it meets the stationary neutral curve~see Fig.
12!. The corresponding frequency approaches zero in the
points of the oscillatory neutral curve. If we ignore for th
moment the stationary neutral curve and consider only
oscillatory instability, the corresponding critical values a
found to be rather close to the stationary one and to appro
them the weaker the coupling between the director and
layers becomes. To summarize, an oscillatory instability w
not found to be possible in all investigated cases and se
to be extremely unlikely to occur.
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D. Anisotropic viscosity

In Fig. 8 we have illustrated that a small viscosity coef
cient n2 facilitates the onset of undulations. In this secti
we will have a closer look at the effect of an anisotrop
viscosity tensor and ask whether undulations can be ca
only due to viscosity effects without any coupling to th
director field~i.e., we consider standard smectic-A hydrody-
namics in this section!.

Let us start our considerations by looking at the spatia
homogeneous state. In a sample with parallel alignment
apparent viscosity isn3, which can easily be seen from th
force on the upper boundary,

FW i5êzs5ġn3êx . ~47!

Similarly, the viscosity of a perpendicular alignment is giv
by n2,

FW'5êzs5ġn2êx . ~48!

For n2,n3 a simple shear flow in a perpendicular alignme
causes less dissipation than in a parallel alignment. The
step is to study the stability of these alignments in the lin
regime. Following the standard procedure~as described
above! we find a solvability condition of the linearized equ
tions which does not depend on the shear rateġ,

05$q21lp@n3~q22qz
2!212~n21n3!q2qz

2#%~B0qz
21Kq4!

3~n2q21n3qz
2!. ~49!

Consequently, a parallel alignment of smectic layers is
early stable against undulations even if the perpendic
alignment might be more preferable due to some thermo
namic considerations. As we have shown in Fig. 8, this r
orous result of standard smectic-A hydrodynamics is weak
ened in our extended formulation of smectic-A

FIG. 12. In most parts of the scanned parameter space, no
sibility for an oscillatory instability was found. If the director fiel
is only very weakly coupled to the layering~in this plot we used
B0550 and n i55) a neutral curve for an oscillatory instabilit
( ) appears above the stationary neutral curve (). Note
that the critical wave vectors are close to each other for both o
latory and stationary instability. The inset shows the freque
along the neutral curve.
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hydrodynamics. When the director can show independent
namics, an appropriate anisotropy of the viscosity tensor
indeed reduce the threshold values of an undulation insta
ity.

IV. COMPARISON TO EXPERIMENTS AND SIMULATIONS

In the previous sections we have shown that the inclus
of the director of the underlying nematic oder in the descr
tion of a smectic-A-like system leads to some important fe
tures. In general, the behavior of the director under exte
fields differs from the behavior of the layer normal. In th
paper we only discussed the effect of a velocity gradient,
the effects presented here seem to be of a more genera
ture and can also be applied to other fields. The key result
our theoretical treatment are a tilt of the director, which
proportional to the shear rate, and an undulation instab
which sets in above a threshold value of the tilt angle~or
equivalently the shear rate!.

Both predictions are in agreement with experimental o
servations. For side-chain liquid crystalline polymers Noir
@15# observed a shear dependence of the layer thicknes
the parallel orientation the layer thickness is reduced by s
eral percent with increasing shear. To our knowledge, t
groups have investigated the evolution of a parallel alig
ment to the vesicle state for lyotropic systems~see Müller et
al. @11# and Zipfel et al. @41#!. In both papers the author
argue that cylindrical structures~with an axis along the flow
direction! are observable as intermediates. These obse
cylindrical intermediates are very close to the undulatio
proposed by our theoretical treatment.

For an approximate quantitative comparison of our th
retical results with the experiments on lyotropic liquid cry
tals we make a number of assumptions about the mate
parameters. As we have shown in Sec. III B, the differe
approaches cause only small variations in the critical w
number. For this estimate it suffices to use the critical wa
number obtained in our earlier work@see Eq.~A2!#. For lyo-
tropic liquid crystals it is known@42,43# that the elastic con-
stants can be expressed as

K5
k

l
~50!

and

B5
9

64
p2

~kBT!2

k

l

~ l 2d!4
, ~51!

wherek5akkBT is the bending modulus of a single bilaye
l is the repeat distance,d is the membrane thickness,kB is
the Boltzmann constant,T is temperature, andak is a dimen-
sionless number of order of unity. With these relations
can estimate the critical wave vector for a sample of thi
nessd using Eq.~A2!,

qc
2'

3p2

8akd

l

~ l 2d!2
. ~52!
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The parameters of the experiment by Zipfelet al. @41# are:
d51 mm, d52.65 nm,l 56.3 nm, andak51.8 @41,44#. On
this basis we estimate the critical wavelength to be of
order of

lc'6.4 mm. ~53!

Zipfel et al. @41# observed a vesicle radius of 3mm, which
is clearly compatible with our calculation. We note that th
estimate assumes that the experiments are done in the h
dynamic regime.

In Sec. III B 3 we have pointed out that the effect on t
order parameter is maximum close to the boundaries of
layer. In a reoriented sample Laureret al. @3# have identified
defects near the boundary of the sample which are in ac
dance with the predicted influence on the order paramet

Molecular dynamic simulations recently made by Sod
mannet al. @45# offer a very precise insight into the behavi
of the layered systems under shear. Direct comparison
these simulations to the analytic theory presented ab
show a very good agreement between both approaches@40#.

The mechanism we have proposed here is somewhat s
lar to a shear induced smectic-C-like situation. Conse-
quently, undulations should also be observed near
smectic-A–smectic-C transitions. Indeed, Johnson an
Saupe@46#, and later Kumar@47#, reported such undulation
just below the transition temperature. In the same spirit,
botta and Durand@48# reported a compression induce
smectic-C-like situation.

To conclude, we have shown in this work that the inc
sion of nematic degrees of freedom in the description
smectic-A-like systems opens the way for a shear induc
destabilization of the layers under shear. Our result are c
patible with experimental observations and are in go
agreement with molecular dynamics simulations.
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APPENDIX A: MINIMAL ANALYTIC MODEL

In our earlier work@25# we considered two independe
variables~the layer displacement and they component of the
director! and found the critical values to be

nx,c
2 54

B0

B022B1
qzAK

B0
~A1!

and

qc
25qzAB0

K
. ~A2!

To compare our present analysis to these results we ex
Eqs.~43! and~44! in power series inu0 ~up to u0

2) and take
only the terms connected withf andu,
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05Af

B1

g1
u02Au

B1

g1
q, ~A3!

052AulpFB1q21Kq41B0qz
22

1

2
u0

2q2~B012B1!G
1AflpB1u0q. ~A4!

The solvability condition of Eqs.~A3! and ~A4! defines the
neutral curveu0(q) and its minimum directly gives the criti
cal valuesuc andqc ~within the approximations of this sec
tion!,

qc
25qzAB0

K
, ~A5!

uc
254qz

B0

B012B1
AK

B0
, ~A6!

ġc54
B1

g1~l11!
Aqz

B0

B012B1
AK

B0
. ~A7!

The differences between Eqs.~A1! and~A2!, and~A5!–~A7!

are mainly due to the correct normalization ofp̂ @see Eqs.
~29!–~31!# used in the present paper.

To summarize, we conclude that our former results ar
special case of the present analysis when the correct nor
ization of p̂ is implemented. Especially, the divergence of t
critical values atB052B1 turns out to be an artifact of the
normalization ofp̂ used in Ref.@25#.

APPENDIX B: GENERATING THE SET
OF LINEAR EQUATIONS

Since the theoretical methods used in this paper~irrevers-
ible thermodynamics and linear stability analysis! offer well
defined algorithms for the generation and analysis of mac
scopic hydrodynamic equations, we performed parts of
calculation using Maple. In this appendix we describe
key ingredients of a suitable Maple program. A good start
point for such an approach are the balance equations for
unknown quantities~16!, ~18!–~20!, ~27!, and ~28! along
with the energy density~1! in the appropriate approximation
These equations are entered directly in Maple, with the
known quantities being functions of time and the spatial
ordinates. The thermodynamic forces used in these equa
are determined by Eqs.~13!–~14!. For an implementation of
these equations one must take into account that Maple
only compute the derivative with respect to constants and
with respect to functions, i.e., the relevant functions in t
energy density must be substituted temporarily by consta

For the linearized set of equations we substitute the
known quantities by expressions of the type

u~ t,x,y,z!5u01aAu sin~qzz!cos~qy!exp~ ivt ! ~B1!

in the governing equations. Herea is a small parameter an
Au is the relative amplitude of the linear correction tou0.
Expanding the substituted set of equations in a power se
7-13
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in a gives in zeroth order the spatially homogeneous eq
tions and in first order the linear set of equations, which
no longer differential equations but algebraic ones. One
tains a matrix representation of these equations by expan
them in power series of the relative amplitudes and tak
S.
le

y,

J.

e,

et

x,

h-

A.
ol

06170
a-
e
b-
ng
g

only the first order terms. After dividing by the terms whic
depend on the spatial and temporal coordinates theFORTRAN

code of this matrix representation is generated using
CODEGEN, FORTRAN function of Maple and subsequentl
solved using standard numerical procedures.
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